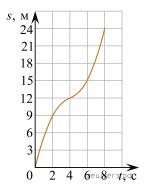
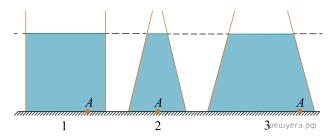

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

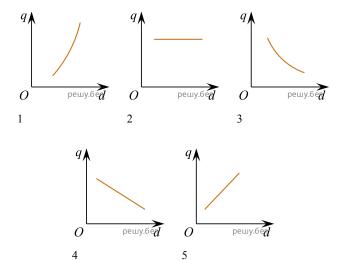
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


- 1. Единицей гидростатического давления в СИ является:
 - 1) 1 Πa
- 2) 1 H
- 3) 1 c
- 4) 1 Дж
- 2. На рисунке изображены положения шарика, равномерно движущегося вдоль оси Ox, в моменты времени t_1, t_2, t_3 . Момент времени t_3 равен:

- **3.** Тело движется вдоль оси Ox. Зависимость проекции скорости v_x тела на ось Ox от времени t выражается уравнением $v_x = A + Bt$, где A = 3 м/с и $B = 2 \text{ м/c}^2$. Проекция перемещения Δr_x совершённого телом в течение промежутка времени $\Delta t = 4$ с от момента начала отсчёта времени, равна:
 - 8 м
- 2) 11 m
- 3) 28 м
- 4) 32 m
- 5) 44 M


5) 1 Γι

4. На рисунке приведен график зависимости пути s, пройденного телом при равноускоренном прямолинейном движении от времени t. Если от момента начала до отсчёта времени тело прошло путь s = 24 м, то модуль перемещения Δr , за которое тело при этом совершило, равен:


- 1) 0 м
- 2) 3 M
- 3) 6 M
- 4) 12 m
- 5) 24 m
- 5. Камень бросили горизонтально с некоторой высоты со скоростью, модуль которой $v_0 = 20$ м/с. Через промежуток времени $\Delta t = 3$ с от момента броска модуль скорости камня υ будет равен:
 - 1) 27 m/c
- 2) 30 m/c 3) 36 m/c 4) 46 m/c 5) 55 m/c

6. На рисунке изображены три открытых сосуда (1, 2 и 3), наполненные водой до одинакового уровня. Давления p_1, p_2 и p_3 воды на дно сосудов в точке A связаны соотношением:

1)
$$p_1 = p_2 = p_3$$
 2) $p_1 = p_2 > p_3$ 3) $p_3 > p_1 > p_2$ 4) $p_2 > p_1 > p_3$
5) $p_2 > p_3 > p_1$

7. Плоский воздушный конденсатор подключён к источнику постоянного напряжения. График зависимости заряда q конденсатора от расстояния d между обкладками конденсатора представлен на рисунке, обозначенном цифрой:

8. Если при изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа увеличилось на $\Delta p=120~\mathrm{к\Pi a}$, а абсолютная температура возросла в k=2,00 раза, то давление p_2 газа в конечном состоянии

4) 4;

5) 5.

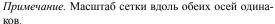
1) 180 кПа 2) 210 кПа 3) 240 кПа 4) 320 кПа 5) 360 кПа

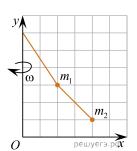
3) 3;

1) 1;

2) 2;

- **9.** С идеальным газом, количество вещества которого постоянно, проводят изобарный процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, температура газа увеличивается
 - 2) теплота не подводится к газу и не отводится от него, температура газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, температура газа постоянна
 - 4) теплота не подводится к газу и не отводится от него, температура газа увеличивается
 - 5) от газа отводят теплоту, температура газа уменьшается
 - 10. Температура воды в солнечном водонагревателе измеряется в:
 - 1) ваттах 2) вольтах 3) градусах Цельсия 4) ватт-часах 5) амперах

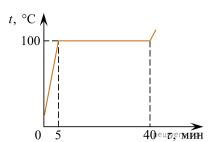

равно:


11. Парашютист совершил прыжок с высоты $h=1200~\mathrm{M}$ над поверхностью Земли без начальной вертикальной скорости. В течение промежутка времени $\Delta t_1=6,0~\mathrm{C}$ парашютист свободно падал, затем парашют раскрылся, и в течение пренебрежимо малого промежутка времени скорость парашютиста уменьшилась. Дальнейшее снижение парашютиста до момента приземления происходило с постоянной по модулю вертикальной скоростью υ . Если движение с раскрытым парашютом происходило в течение промежутка времени $\Delta t_2=92~\mathrm{C}$, то модуль вертикальной скорости υ при этом движении был равен ... $\frac{\mathrm{KM}}{\mathrm{Y}}$.

12. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t)=A+Bt+Ct^2$, где A=4,0 м, B=5,0 м/с , C=1,0 м/с 2 . Если масса тела m=2,0 кг, то в момент времен t=5,0 с мгновенная мощность P силы равна ... **В**т.

13. При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке с минимально возможной скоростью, модуль которой $\upsilon_{min}=12$ м/с. Если коэффициент трения $\mu=0,60$, то радиуса R окружности, по которой движется мотоциклист равен ... дм. Ответ округлите до целых.

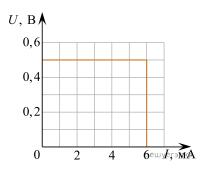
14. Вокруг вертикальной оси *Оу* с постоянной угловой скоростью ω вращаются два небольших груза, подвешенных на лёгкой нерастяжимой нити. Верхний конец нити прикреплён к оси (см. рис.). Если масса второго груза $m_2=44$ г, то масса первого груза m_1 равна ... г.



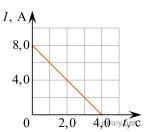
15. В вертикально расположенном цилиндре под легкоподвижным поршнем, масса которого m=2,00 кг, а площадь поперечного сечения $S=10,0\,$ см 2 , содержится идеальный газ (см. рис.). Цилиндр находится в воздухе, атмосферное давление которого $p_0=100\,$ кПа. Если начальная температура газа и объем $T_1=300\,$ К и $V_1=4,00\,$ л соответственно, а при изобарном нагревании изменение его температуры $\Delta T=160\,$ К, то работа A, совершенная силой давления газа, равна ... Дж.

16. Микроволновая печь потребляет электрическую мощность P=1,2 кВт. Если коэффициент полезного действия печи $\eta=63\%$, то вода $(c=4,2\frac{\kappa\square ж}{\text{K}\Gamma}, {}^{\circ}C)$ массой m=0,40 кг за промежуток времени $\Delta \tau=80$ с, нагреется от температуры $t_1=15$ ${}^{\circ}C$ до температуры t_2 равной ... ${}^{\bullet}C$.

17. К открытому калориметру с водой (L=2,26 $\frac{{\rm M} \square_{\rm K}}{{\rm K}\Gamma}$) ежесекундно подводили количество теплоты Q=84 Дж. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна ... г.



18. Четыре точечных заряда $q_1=0.75$ нКл, $q_2=-0.75$ нКл, $q_3=0.9$ нКл, $q_4=-2.5$ нКл расположены в вакууме на одной прямой (см. рис.). Если в точке A, находящейся посередине между зарядами q_1 и q_2 , модуль напряженности электро-


статического поля системы зарядов $E=15~{\rm kB/m},$ то расстояние l между соседними зарядами равно ... **мм**.

- **19.** Два находящихся в вакууме маленьких заряженных шарика массой m=27 мг каждый подвешены в одной точке на лёгких шёлковых нитях одинаковой длины l=20 см. Шарики разошлись так, что угол между нитями составил $\alpha=90^\circ$. Если заряд первого шарика $q_1=40$ нКл, то заряд второго шарика q_2 равен ... **нКл**.
- **20.** Две частицы массами $m_1=m_2=0,400\cdot 10^{-12}$ кг, заряды которых $q_1=q_2=1,00\cdot 10^{-10}$ Кл, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние l=100 см между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=15,0$ $\frac{\rm M}{c}$, а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.
- **21.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Максимальное напряжение на конденсаторе контура $U_0=3.0$ В, максимальная сила тока в катушке $I_0=1.2$ мА. Если индуктивность катушки L=75 мГн, то ёмкость C конденсатора равна ... нФ.
- 22. В идеализированной модели фотоэлемента на фотокатод падает электромагнитное излучение с длиной волны $\lambda=400$ нм постоянной мощностью P. Фотоэлектроны, вырванные под действием этого излучения с поверхности фотокатода, движутся с одинаковой скоростью в направлении анода. На рисунке изображена зависимость напряжения U на фотоэлементе от силы тока I в цепи, полученная после подключения фотоэлемента к реостату и изменения сопротивления реостата от

- $R_{\min} = 0$ Ом до бесконечно большого значения. Если каждый фотон, падающий на фотоэлемент, вырывает один фотоэлектрон, то максимальная доля энергии падающего излучения, превращаемая в электрическую энергию, равна ... %.
- **23.** Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Хе. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~{\rm сут.},$ то $\Delta N=90000$ ядер $^{133}_{54}$ Хе распадётся за промежуток времени Δt , равный ... сут.
- **25.** Если за время $\Delta t=30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W=31,7$ кВт \cdot ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{c}$.

28. На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{C}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.